機械学習のための「前処理」入門
概要:
きれいに整形されたデータを使った分析の経験はあっても、「実務で扱う生データをどのように前処理すればよいのか」と、お悩みではないでしょうか。前処理は課題ごとに、都度オーダーメイドで設計・実装していくものです。本書では4種類のデータを対象とし、機械学習で予測を行う場合の前処理の基本ノウハウを学び、Pythonによる実装を体験します。本書で扱った技術は、そのまま実務にも活かせます。
機械学習における分析モデルの作成は自動化されつつありますが、その時に投入する特徴量は、人の手で前処理して作成する状況が続くでしょう。これからデータ分析に携わる方々にとって、前処理の力を高めることは、きっと大きな助けとなるでしょう。
(本書「あとがき」から抜粋・編集)
■著者プロフィール
足立 悠(あだち はるか)
BULB株式会社所属のデータサイエンティスト。
過去にメーカーのSE やデータサイエンティスト、IT ベンダーのデータアナリスト等を経て現職。数々のデータ分析プロジェクトのほか、実務者教育にも従事。個人的な活動として、記事や書籍の執筆、セミナー講師なども行っている。著書に『初めてのTensorFlow』と『ソニー開発のNeural Network Console 入門』がある。
多感な時期に高専で5年間を過ごしてしまったせいか、周囲から変人や外れ値と評されている。趣味はお地蔵さんが密集している場所に佇むこと。近いうちに、日本を北から南へ移動しながら仕事し、パフォーマンスを測定してみたい。 (閉じる)
目次:
第1章 データ分析・活用を始めるために
1 データドリブンな時代へ
2 データ分析プロジェクトに必要な要素
3 データ分析人材のスキル
第2章 データ分析のプロセスと環境 (もっと読む)
- ジャンル:
- コンピュータ > AI・機械学習
原則、返金不可
詳細はこちら
この著作者による商品
販売(無期限): ¥ 3,080(税込)